
Page: 1/22

Calibration Unit CalU and Controller CuC

Calibration of a HF/VHF/UHF solar radio telescope

Tools and units below describe a system to calibrate raw-data from CALLISTO (FIT-files) into antenna

temperature Tant and into solar radio flux S, in case antenna gain is known all over the observation time

and frequency range. Calibration is performed with respect to an internal noise source, based on an

Avalanche diode which frequency range is limited from ~10 MHz to ~900 MHz. Excess noise ratio ENR is

in the order of +15 … +20 dB, depending on component availability. A calibration protocol will be

provided with order. Calibration is performed by injecting two known noise temperatures Tcold and Thot

into the receiving system at pre-defined times, usually modulo 15 minutes synchronous with data

collection by Callisto.

System to perform such a calibration is composed out of:

1. Hardware:

- Calibration unit CalU between antenna and LNA, containing rf-switch and noise source

- Calibration controller CuC next to the computer to control and feed CalU

- Antenna with access to the feed such as CLP-5130 or BICONE or Yagi (not LWA!)

2. Software:

- Python script MOS-ctrl.pyw to control CalU

- Python script calibrate.pyw to perform calibration, once FIT-file is written to disc

- Required: Python 3.7 or higher, libraries installed astropy, scipy, os, configparser, tkinter, time

and serial (Pyserial). E.g.: https://www.anaconda.com/download

- System scheduler ssfree.exe (Windows) or crontab (LINUX):

https://www.splinterware.com/products/scheduler.html

- ARDUINO either full IDE or just drivers for serial communication:

https://www.arduino.cc/en/software

Important aspects:

- Antenna gain must be known as precise as possible all-over observed frequencies and observation

times.

- In case antenna is fixed at sky-position and not tracking the Sun a model of gain variation versus

date&time must be included. Usually, calibration only works when antenna gain is known for all

frequencies of observation over all dates and times.

- In case any nearby transmitters appear at Callisto antenna input with power > -60 dBm, Callisto suffers

from saturation and calibration goes wrong. At many places worldwide, a FM-notch filter can help to

cope with strong radio transmitters. In addition, at high rfi-level, it might be useful to reduce software-

controlled gain of CALLISTO (pwm-value in Callisto.cfg).

https://www.anaconda.com/download
https://www.splinterware.com/products/scheduler.html
https://www.arduino.cc/en/software

Page: 2/22

Given currently available rf-tight enclosures, maximum 10 CalU can be produced. For more units, PCB

requires a re-design and a re-evaluation of the enclosure. Currently are 2 CalU on stock and one is used

for endurance testing and software improvements.

System Layout:

A system is composed out of a directional antenna tracking the Sun, the calibration unit CalU with its

controller CuC, low noise amplifier LNA (e.g. LNA2000), optional heterodyne converter and Callisto.

Controller as well as Callisto should be controlled by one and the same computer to ensure time

synchronization of calibration sequence and observation. Calibration controller CuC also allows to supply

LNA and Callisto where control-software offers the option to switch power off/on for LNA and CALLISTO.

This to save power in case of photo-voltaic power source and/or to reset CALLISTO in case of blockage.

Controller also provides +28V in case of a commercial noise source together with a L-band calibration

unit, based on low loss microwave relays. The calibration unit described here is designed to cover 10

MHz … 1 GHz and low cost given by low cost SPDT UltraCMOS RF-Switch PE4250 from Peregrine

Semiconductors.

Fig. 1: System layout solar radio telescope with flux calibration unit and optional frequency up-converter,

Bias-T is used to supply LNA2000 with 12Vdc.

Page: 3/22

Parameter Calibration Unit CalU Calibration unit controller CuC

Frequency range ~10 MHz … ~900 MHz N/A

Attenuation (loss) < 2 dB N/A

Wave impedance 50 Ω N/A

Power consumption 15 V * 30 mA max ~0.45 W max < 12 V x 1.5 A including Callisto + LNA

Dimensions 155 x 95 x 25 mm^3 180 x 110 x 55 mm^3

Weight 305 grams 800 grams incl. power adapter {tbc}

Table 1: Specifications calibration unit CalU and calibration unit controller CuC

Fig. 2: Schematics calibration unit CalU with SPDT, Avalange noise diode and voltage regulators 10 V and

3.3 V.

Page: 4/22

Fig. 3:

Measurement of

s21 between

antenna port and

LNA-port with <

2dB up to 1 GHz.

For low loss

application such as

in L-band rf-

microwave relays

are required. This is

not part of this

project as cost will

be much higher

with rf-microwave

relays. Plot of Calu-

24-01

Fig. 4: Calibration plot of

internal noise diode. Red plot

show reference noise source

after DJ9BV, while blue plot

shows ENR of internal noise

source, based on Avalange

diode BZX384C6V8. Blue dots

are transferred to a table in

calibration script (Python) and

later on used together with

interpolation function.

Generic plot.

Page: 5/22

Fig. 5: Schematics of control unit CuC, based on Arduino Micro with USB-port, dc/dc/converter 12V -> +/-

15V.

Device connectors at backside of CuC:

DIN-connector ccw Signal PCB Terminal External cable 3 wire + shield

1 (blue wire) GND K10-1 Shield=GND=0V

2 (white wire) ~Calibration/Antenna K4-innercontact White

3 (green wire) Noise source K3-innercontact Green

4 (red wire) +15 Volt < 20 mA K13-1 Red/Purple

Table 2: Circular female DIN chassis-connector at calibration controller back-side for CalU

Page: 6/22

DC-connector 12V in Signal PCB terminal

DC centre lug GND K9minus

Left lug (seen from solder side) +12 volts > 400 mA K9plus

Table 3: DC-male connector 5.5/2.1mm 12 volts at calibration controller back-side

4 mm Banana connector female Signal PCB terminal

CALLISTO black (blue wire) GND K10-3

CALLISTO yellow (yellow wire) +12 volts 250 mA K1-innercontact

LNA2000 blue (blue wire) GND K10-2

LNA2000 green (green wire) +12 volts 120 mA K2-innercontact

Table 4: Banana connectors at calibration controller back-side to feed LNA and/or CALLISTO (Option)

Printed circuits boards Calu and CuC:

Page: 7/22

Fig. 6a: Image of

outdoor calibration

unit with open cover.

Top left: antenna

input, bottom left

output to LNA and

finally to receiver.

Right side three LED

showing status of

operation

(antenna/calibration,

noise excess and

15Vdc). Underneath

feed through

capacitor for

antenna, noise and

power.

Fig. 6b: Image of

indoor calibration

unit controller

board. On top right 4

MOS-relay (power

opto-coupler) to

switch on/off

CALLISTO with 12

volts at K1, LNA2000

with 12 volts at K2,

noise source with 15

volts at K3 and

switching between

calibration and

observation with 15

volts at K4. On the

left side ARDUINO

MICRO as controller

with USB-connector and TRACO dc up-converter to produce +/-15 volts out of 12 volts DC input. Also

available +28 volts for commercial noise sources.

Arduino firmware is written in C to control relays R1-R4 and to test +28 volts for extra noise source.

Space left for additional 4 relays which are foreseen for L-band calibration unit, based on expensive

electro-mechanical rf-relays (not part of this low-cost project).

Page: 8/22

Calibration control Python3:

Fig. 7: Python application MOS-ctrl.pyw to

control calibration unit, Callisto and LNA2000.

There is also a C++ version available but, it

doesn’t work properly on Windows 11, only

Win XP, 7, 8 and 10.

Every time modulo 15 minutes it automatically

activates calibration mode and injects Tcold for

10 seconds and after 10 seconds Thot. Then

back to observation mode by connecting

antenna to the receiver system.

This application is based on TkInter().

Fig. 8: Calibration signals with notch-filter at FM 88 – 108 MHz and low pass filter at 450 MHz to avoid

saturation of LNA and/or CALLISTO by commercial transmission services. Ycal denotes to received Y-

factor Thot/Tcold = Ihot/Icold

Page: 9/22

Fig. 9: Running CALLISTO application (C+) and control application (top right in Python3). Image = remote

screen-shot via AnyDesk. Light curve bottom left shows a calibration sequence Tcold, Thot.

Page: 10/22

Example from raw-data to SFU:

Fig. 10: Zoom into raw data (FIT-file from CALLISTO) before calibration. Intensity in digits.

Fig. 11: Calibration in antenna temperature.

Page: 11/22

Fig. 12: Calibration in SFU, plot: no background subtracted. Thus, rfi is also calibrated!

Fig. 13: Calibration in SFU, plot: with background subtracted

Page: 12/22

Other examples of calibrated solar radio bursts and lightning.

Fig. 14: Type III burst observed with CLP-5130-1N, data calibrated in SFU. Plot in Python3.

Fig. 15: Calibrated type II radio burst during Swiss National Holiday. Peak flux 1349 sfu at 76 MHz at

position of mouse cursor at 07:12:47 UT. Plot presented as screen-hot from JavaViewer

https://e-callisto.org/Software/jv_20070109.jar

Page: 13/22

Fig. 16: Heavy lightning in the afternoon at a distance of 1…2 km. On the far-left side we can see 10

seconds Tcold with ~300 kelvin (black), followed by Thot ~12’000 kelvin for another 10 seconds (green).

Antenna temperature of lightning strikes exceeds 12’000 kelvins.

Real-time control process MOS-ctrl.pyw:

A Python script running permanently takes care about control of the calibration unit CalU. Every modulo

15 minutes a calibration sequence is send to the calibration control unit CuC via USB-interface. Fist 10

seconds switch to 50 Ω termination resistance of cold noise source at ambient temperature -> Tcold,

usually in the order of 300 kelvins. In the standard calibration script this reference temperature is set to

an average constant value. For more precise calibration ambient temperature should be measured and

integrated in the calibration script (not implemented yet). Second 10 seconds the internal noise source is

powered with 15 volts. At seconds 20 noise source power is switched off and rf-switch is changed to

antenna for remaining 14 minutes and 40 seconds.

Parameter in script:

- Communication port, in my case ‘COM13’

- Print-/Logging-mode, in my case False. Set to True for testing and experimenting

- Calibration period, in my case 15 minutes

- Time for Tcold and Thot fix coded in state-machine of Python-script to 10 seconds

Page: 14/22

Real-time calibration process calibrate.pyw:

A Python script calibrate.pyw which is triggered modulo 15 minutes at minutes 01, 16, 31 and 46 takes

care about calibration of raw FIT-file from CALLISTO. Input parameter are stored in file configCalU.ini

This configuration file contains following calibration parameter:

- Path where FIT-files are primarily saved by CALLISTO

- Ambient temperature = reference temperature = Tcold, in my case 25°C

- Minimum Y-factor taken from calibration steps, in my case 9 dB

- Logging flag, whether Y-factor shall be logged, in my case True

- Antenna gain as a table with one array for frequency and a second table with gain in dB. Tables MUST

cover frequency range of observation for later interpolation during calibration.

- Calibration tables of internal noise source, one for frequency and a 2nd one for ENR in dB. Tables MUST

cover observation frequency range.

Calibration steps are:

1. Read all calibration parameter from configuration file

2. Get a list of all FIT-files in designated folder

3. For each FIT-file check if unit != ‘sfu’, then perform calibration

4. Define start- and stop-time for Tcold and Thot observation

5. Read data-array and frequency array from FIT-file

6. Initiate interpolation of excess noise ratio and antenna gain for frequency axis of FIT-file

7. Convert raw data into dB

8. Read calibration data Icold and Ihot, representing Tcold and Thot from FIT-file and average

9. Calculate Y-factor of calibration sequence and perform logging in case of debug = True

10. Convert dB into linear scale for Iref=Icold, Ihot and Iantenna

11. Calculate Tref=Tcold and Thot

12. Check if Thot>Tcold. In case of interference it might be wrong

13. Calculate antenna temperature Tant = (Thot - Tcold) / (Ihot - Icold) * (Iant - Iref) + Tref

14. Calculate wavelength lambda from frequency array out of FIT-file

15. Calculate flux as S = 8 k pi / (G * lambda**2) * Tant * 1e22 with k = Boltzmann constant

16. Clip flux data between 10 sfu and 450’000 sfu (~56 dB sfu)

17. Perform logarithmic compression Sc = 45 * log10(S) and squeeze into 8-bit resolution

18. Update data-array with flux instead of digits and update unit with ‘sfu’

After calibration at times modulo 15 minutes at minutes 02, 17, 32 and 46 calibrated FIT-files are

uploaded to the central server in Switzerland by FTP. Then the file is moved to a local backup-folder. This

process is activated by the application ssfree.exe from https://www.bytesin.com/software/Download-

System-Scheduler/ in case of Windows computer. In case of LINUX crontab can be used to trigger

calibrate.pyw via Python3.

Page: 15/22

Reading and plotting calibrated FIT-files in Python:

After reading a calibrated FIT-file the compressed data need to be de-compressed by the following steps:

1. Read the FIT-file as usual

2. Decompress S_linear = 10** (data/45.0)

3. Plot if you prefer linear scale [sfu]

4. In case of logarithmic scale perform S_dB = 10*log10(S_linear + 0.1) # 0.1 to avoid log10(0)

5. Plot flux in dB [sfu]

6. In all plot cases you need to play with colour-table and colour-table clipping parameter vmin and

vmax to get best visual quality of the calibrated observation. Also relevant regarding visual

quality is whether you subtract background or not, see figures 12 and 13.

In case of quick-view plotting with JavaViewer, de-compression is performed automatically. For

JavaViewer, get it from here: https://e-callisto.org/Software/jv_20070109.jar

Prize indication, status September 2024:

Qty Unit Fully tested in enclosure PCB populated

1 Calibration unit CalU 350 CHF Not supported

1 Calibration control unit CuC 390 CHF TBD

1 Control SW: MOS-ctrl.pyw Free of charge N/A

1 Calibration SW: calibrate.pyw Free of charge N/A

1 Shipping cost per one set CalU+CuC < 150 CHF < 150 CHF

Table 5: Preliminary cost estimation

CalU can only be delivered with enclosure, with feed-through, with LEDs and with SMA-connectors.

Otherwise neither any tests nor cross-calibration of internal source can be performed. But control unit

CuC can be ordered without any connectors, without enclosure and without power adapter for those

cases where the customer wants to integrate PCB in an existing unit with its own power supply and

connectors.

Ask for shipping cost, it depends on country of delivery and type of delivery (economy or urgent). In case

of several units you may add another 90 CHF for appropriate shipping container.

https://e-callisto.org/Software/jv_20070109.jar

Page: 16/22

Appendix: Configuration of System Scheduler ssfree.exe for Windows users:

System scheduler is used to trigger calibration.py at hh:01, hh:16, hh:31 and hh:46 as well as to trigger

FTP-upload to central server at hh:02, hh:17, hh:32 and hh:47 whereas 00 < hh < 24.

Fig. 17: Application configuration for FIT-file calibration. Path to Python.exe might be different for every

user. You need to search for python.exe using file-explorer. Parameter-folder as well as working folder

might also look different, depending on chosen drive and instrument-code = focus-code (00…63).

From April 25th, 2025 onwards replace python.exe by pythonw.exe and calibrate.py by calibrate.pyw!

Page: 17/22

Fig. 18: Scheduling for calibration process

Page: 18/22

Fig. 19: Application configuration for FIT-file upload to central server. Path to Python.exe might be

different for every user. You need to search for python.exe using file-explorer. Parameter-folder as well

as working folder might also look different, depending on chosen drive and instrument-code = focus-

code (00…63).

 After final commissioning Python script kk3.py will probably be renamed to UploadFTP.py [tbd]

In the future pyton.exe will be replaced by python.exe and kk3.py by kk3.pyw or [tbd].pyw

Page: 19/22

Fig. 20: Scheduling for FTP-upload

Page: 20/22

Fig. 21: Harnessing of CuC inside aluminium enclosure. Be aware that all supply voltages (purple and red

wires) have to be connected the outer contacts of K1…. K4 due to internal diode of the MOS-relay. Inner

contacts (orange wires) need to be connected with the connectors at the back-plate of the enclosure!

Blue wires denote to ground connections.

Page: 21/22

Recommended folder structure:

CALLISTO-01 Main folder. 01 denotes to focus-code

 Application Contains all files required for CALLISTO

 AutoScheduler All files for automatic observation

 FITbackup Fit backup if configured

 FITfiles Temporary FIT-files

 FrequencyGenerator To generate new frequency program

 Images Plots in case web generator is active

 Lightcurves Light curves if enabled

 LogFiles Logfiles from Callisto.exe

 OVSbackup Backup spectral overviews

 OVSfiles Current spectral overview if enabled

 PerlScripts PERL-scripts in case of FTP only

 PythonScripts Folder

 kk3.py/kk3.pyw Upload FTP to Switzerland and SFTP to Spain

 Calibrate.pyw Calibration script at 01, 16, 31, 46

 configCalU.ini Configuration of calibration ->edit

 MOS-ctrl.pyw Controls calibration unit CalU

 Tools Several support programs

 WebGenerator Generates real-time light-curves

Page: 22/22

Control cable between CuC and CalU:

Shield only connected at CalU-side, but not at CuC-side!

Version control:

Version Date

Preliminary draft CalUandControl.docx 09.09.2024

CalUandControl-V01.docx 27.09.2024

CalUandControl-V02.docx minor updates 29.10.2024

CalUandControl-V02.docx default folder added and wiring 18.04.2025

CalUandControl_V03.docx change from *.py to *.pyw 25.04.2025

